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Abstract: The research into finite field multiplication has gained a significant amount of interest due to its prominent applications 

in cryptography and error detection codes. This cryptographic arithmetic technique is a laborious task that is not only costly but 

also takes a significant amount of time. It requires millions of gates. The research conducted for this particular investigation of a 

cryptographic algorithm suggests an effective hardware architecture for all cryptographic applications that is based on cyclic 

redundancy check (CRC) as an error detection method. This work introduces an architecture for digit serial multiplication in finite 

fields GF, with applications to cryptography. GF stands for Galios finite fields (2m). The steps of multiplication and degree 

reduction are alternated within the framework of the suggested system, which is based on the representation of polynomial bases. 

A multiplier with M bits may be used for calculations in any binary field of order, and it is compatible with any irreducible 

polynomial. Therefore, the Versatile and Scalable Digit Serial/Parallel Multiplier Architecture for Finite Field will be merged 

with the Reliable CRC implementation and design of GF(23) = 8-Bit, GF(24) = 16-Bit, and GF(25) = 32-Bit based CRC Error 

detection. This work was created using Verilog HDL, and it was then synthesized using Vertex-5 FPGA. After that, all of the 

parameters like area, delay, and power are obtained. 

Index Terms - Cyclic redundancy check (CRC), Finite Field Multiplier, Galois Field (GF). 
 

I. Introduction: 

Among the many finite-field operations that are used in the designs of many current applications and systems, finite-field 

multiplication has garnered a significant amount of attention due to its prominence. The multiplication modulo is an irreducible 

polynomial that is used to define the finite field. Finite-field multipliers conduct multiplication using this modulo [1]. In post 

quantum cryptography, also known as PQC, the inputs might be quite huge, and the finite-field multipliers can need millions of 

logic gates to function properly. Therefore, it is a difficult challenge to construct such systems that are robust to natural and 

deliberate defects. As a result, research has concentrated on methods to minimize mistakes and get better reliability while 

maintaining an acceptable level of overhead. In addition, there has been past work done on defending against fault assaults and 

providing dependability. This study used error-detection systems of number theoretic transform (NTT) in order to identify both 

permanent and transient faults [2]. One of the tasks that it carried out was defect detection for stateless hash-based PQC 

signatures. In addition, error-detection hash trees for stateless hash-based signatures are being suggested as a means of making 

such schemes more dependable against natural faults and aiding in the protection of them against intentional faults. Through re-

computing with swapped cipher text and additional authenticated blocks, algorithm-oblivious constructions are proposed. These 

constructions, which can be applied to Galois counter mode (GCM) architectures by employing various finite-field multipliers in 

GF(2128), can be applied to the algorithm. Several error-detection checksum codes and spatial and temporal redundancies are 

included in these countermeasures as part of the NTRU encryption technique. The suggested error-detection structures that were 

developed are customized for the Luov cryptographic algorithm; nevertheless, they are versatile enough to be used with a variety 

of PQC algorithms that make use of finite-field multipliers. Our suggested architectures make use of cyclic redundancy check 

(CRC) error-detection algorithms to ensure that they are aware of overhead and have high error coverage [3], [4]. 
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These finite-field multiplications are very difficult to perform and need a footprint covering a large region. Because of this, the 

implementation of such designs that are robust to both natural and purposeful defects is a difficult undertaking. The purpose of 

this research is to develop error-detection schemes that can be adapted to other applications and cryptographic algorithms whose 

building blocks require finite-field multiplications. These error-detection schemes will protect finite-field multipliers used in 

cryptosystems from both natural faults and fault injections. One example of such a system is the Luov algorithm [5]. It is 

important to note that the proposed error-detection schemes are adaptable. In this work, Section II presents the Finite Field 

Multiplier with Proposed Error Detection Schemes Based on CRC, Section III presents the Versatile and Scalable Digit Serial 

Parallel Multiplier, and Section IV describes the Novelty of CRC Integration. In the next section, "Section V," we will examine 

the results and the implementation, and Section VI will provide the conclusion of this effort. 

II. Finite Field Multiplier with Proposed Error Detection Scheme based on CRC: 

Code-based, hash-based, isogeny-based, lattice-based, and multivariate-quadratic equation-based cryptosystems are the five most 

common types of PQC algorithm classes. The difficulty of decoding in a linear error-correcting code is what sets code-based 

cryptography apart from other forms of encryption; this is how its security is maintained. Hash-based cryptography is a kind of 

cryptography that generates signature algorithms by basing those algorithms on the safety of a particular cryptographic hash 

function. The difficulty of solving the task of finding an isogeny between two super singular elliptic curves serves as the 

foundation for the security provided by cryptography that is based on isogeny. The creation of a public-key cryptosystem that is 

based on lattices is within the capabilities of the cryptography that is based on lattices. Last but not least, the safety of 

cryptography that is based on multivariate-quadratic equations is determined by how difficult it is to solve a system of 

multivariate polynomials over a finite field [6]. These types of cryptographic algorithms make advantage of high field sizes in 

order to deliver the required levels of security. There is a constraint placed on the coefficients of the public key in the Luov 

cryptosystem, which is a multivariate public key encryption method and an adaption of the unbalanced oil and vinegar (UOV) 

signature scheme. The strategy, on the other hand, makes use of two finite fields: the first is a binary field with two elements, and 

the second is that field's extension with degree m. The binary field is denoted by F2, and its extension to degree m. The central 

map F:𝐹2𝑚
𝑛          𝐹2𝑚

𝑜  is a quadratic map, where o and v full fill the equation n = o + ν, αi,j,k, βi,k and γk are selected from the base 

field F2, and whose components f1,..., fo are in the form of  Equation1. 

𝑓𝑘(𝑥) = ∑ ∑ ∝𝑖,𝑗,𝑘 𝑥𝑖 𝑥𝑗
𝑛
𝑗=1

𝜈
𝑖=1 + ∑ 𝛽𝑖,𝑘𝑥1𝑛

𝑖=1 + 𝛾𝑘    (1)  

 

 
 

 

 

Our objective is to derive error-detection strategies that are superior than parity signatures in terms of error coverage and breadth, 

and then investigate how such strategies might be used to the Luov algorithm. As a result, we develop CRC signatures for the 

finite-field multipliers that are utilized in the Luov method and apply them. This would be a step forward toward detecting natural 

and malicious intelligent faults, particularly and as discussed in this brief, considering both primitive and standardized CRCs with 

different fault multiplicity coverage [7]. This would be a step forward toward detecting natural and malicious intelligent faults. 

CRC is based on the idea of cyclic error-correcting codes, which was initially introduced in 1961 when CRC was first suggested. 

It is necessary to have a generator polynomial g(x) in order to construct CRC. The message is what is used as the dividend, the 

quotient is thrown away, and the remainder is what is used to make the result. In the case of CRC, the data is supplemented with a 

Fig.1: Finite Field Multiplier with the proposed error detection schemes based on CRC 
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predetermined quantity of check bits, and these check bits are analyzed when the output is obtained in order to identify any 

mistakes. Figure 1 displays the whole of the finite-field multiplier along with our various error-detection algorithms [8]. The 

actual CRC (ACRC) and predicted CRC (PCRC) are abbreviations for the ACRC signatures and PCRC signatures, respectively. 

In Figure 1, only one EF is displayed for clarity's sake; however, for CRC-5, which is the case study recommended in this short, 

five EFs are calculated on each module. This is because CRC-5 is a complex case study. Figure 2 provides a more in-depth look 

at the module in order to provide light on the functioning of the proposed CRC signatures in each finite-field multiplier. 

 

 

 
 

 

 

The procedure for the sum and pass-thru modules is the same as the one outlined for the parity signatures procedure. When it 

comes to the sum module of CRC, pX is equivalent to the sum of the parity bits of the input components A and B in GF(2m). 

Specifically, pX= pA+ pB describes this relationship. In addition, for the pass-thru module in CRC, pX = b• pA, where b is a 

component in GF(2m).From Equation2 α-module is obtained. Instead of adding up all of the bits, it examines n bits at a time in the 

modules that are responsible for the sum and the pass-thru for any other CRC-n method. The α module is given by the Equation2 

for which certain number of derivations are required in order to include CRC-n into the module [9]. 

 

𝐴(𝑥). 𝑥 = 𝑎𝑚−1. 𝑥𝑚 + 𝑎𝑚−2. 𝑥𝑚−1 + ⋯ + 𝑎0. 𝑥    (2) 

 

III. Versatile and Scalable Digit Serial Parallel multiplier: 

Recent years have seen a rise in the significance of finite fields due to the many domains where they have found utility, most 

notably combinatorics, coding theory, and cryptography. In particular, the "carry-free" arithmetic of binary extension fields 

GF(2m) is highly appealing from an implementation perspective. Polynomial bases, normal bases, and dual bases are all 

equivalent representations of the field elements, which is another benefit of GF(2m). There is considerable leeway in the degree m 

of the binary extension field, which is determined by the specific uses. Finite fields of relatively high order are employed in 

elliptic curve cryptography; m is typically a prime between 160 and 200, but may be more than 500. The efficient hardware and 

software implementation of finite field arithmetic is the subject of a large body of literature. In this study, we restrict ourselves to 

polynomial bases and solely think about binary fields of GF(2m). General-purpose microprocessors lack polynomial arithmetic 

instructions [10]. A missing instruction for multiplying two binary polynomials would considerably speed up large-order GF(2m) 

multiplication. Polynomial base multiplication in GF(2m) uses shift and XOR instructions or look-up tables. The bit-level 

technique is inefficient, whereas the lookup table method needs memory. Both strategies are impractical for smart cards and other 

low-power devices. A smart card co-processor for field arithmetic is a superior approach. A finite field multiplier for smart cards 

must be adaptable and scalable. 

3.1 Versatility: For a GF(2m) multiplier to be versatile if it operates over a broad variety of finite fields. This means that a 

multiplier that was initially sized for a data route precision of M bits should also be useable for fields of a lower order. The choice 

of field order has an impact on both the total number of points in the elliptic curve group as well as the degree of complexity of 

the discrete logarithm problem that corresponds to it. An adaptable multiplier for GF(2m) makes it possible to choose the degree m 

of the field in accordance with the specific safety standards that are wanted. For instance, a multiplier that was developed for M = 

256 bits is capable of performing multiplications in GF(2233), GF(2193), as well as GF (2163).  

3.2 Scalability: The performance of digit-serial multiplier designs is scalable due to the fact that the digit size, denoted by d, may 

be chosen according to the performance/area trade-off that the user desires [11]. The area-complexity of a digit serial multiplier is 

O(d •m), and it can calculate a multiplication in GF(2m) in m clock cycles. Since the critical path of the mod p(t) operation varies 

Fig.2 Proposed Error Detection Construction for α module 
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linearly on the digit-size d, the reduction modulo the irreducible polynomial p(t) becomes a performance barrier for high digit-

sizes d. This is because the reduction is an irreducible polynomial.  

Following is a concise summary of the binary method for performing multiplication in GF(2m) with a polynomial base 

representation. First, we go through some of the notations that will be used in both this part and the ones that will follow it. Let's 

say that a binary extension field is denoted by GF(2m). Any element of GF(2m) may be stated as a polynomial a(t) of degree m-1 

with coefficients in GF(2), which can be written as "a(t) of degree m-1 with coefficients in GF(2)." 

𝑎(𝑡) = ∑ 𝑎𝑖 . 𝑡𝑖 = 𝑎𝑚−1. 𝑡𝑚−1+. . . . +𝑎2. 𝑡2 + 𝑎1. 𝑡 + 𝑎0
𝑚−1
𝑖=0  (3) 

The value of ai is either 0 or 1. Given that each coefficient of ai may take on the value 0 or 1, it is possible for us to describe the 

field element a(t) using the notation for bit strings as follows: (am-1,...a2,a1,a0). When employing the polynomial basis 

representation, the multiplication of field elements a(t), b(t) GF(2m) is performed modulo an irreducible polynomial p(t) of degree 

m over GF(2) [12]. This is done in order to maintain the integrity of the polynomial basis representation in Equation3 and the 

architecture of bit serial multiplier shown in Figure 3 and it is synthesized in Xilinx Vertex-5 FPGA with Mod px, Reduced 

Polynomial and generation partial products. 

 
 

 

 

IV. Programmable CRC Implementation: 

The mathematical concept of polynomial division, modulo two, provides the foundation for the computation of a cyclic 

redundancy check. In application, it is quite similar to long division of the binary message string by the "generator polynomial" 

string, with a set number of zeroes added; the only difference is that exclusive or operations substitute subtraction operations. This 

type of division can be efficiently realized in hardware by a modified shift register[1,] and in software by a series of equivalent 

algorithms, beginning with simple code that is close to the mathematics and becoming faster (and arguably more obfuscated) 

through byte-wise parallelism and space–time tradeoffs. The polynomial division method is expanded upon by a number of CRC 

standards, each of which specifies an initial shift register value, a final Exclusive-Or step, and, most importantly, a bit ordering. 

As a direct consequence of this, the code that is actually used in reality deviates in a manner that is inconsistent with "pure" 

division, and the register may move either left or right. Figure 4 depicts the novelty-based CRC N-Size architecture; the way in 

which it works at the iteration level is dependent upon the bit size [13]. Initial input given to left shift by 1, which means the input 

data multiplied by 2, similarly CRC polynomial code also left shift by 1, both input data and polynomial code data will be 

XOR'ed, AND'ed finally we get the sign bit comparisons value, if its equal 1 we will XOR the CRC code to CRC Polynomial for 

more encryptions, otherwise the original XOR'ed data directly will be shared, then it follows the next iteration The number of 

times we go through this process is determined by both the bit size and the encryption size. Due to the fact that this work proposes 

error-detection designs, such architectures are based on CRC-8 since there are 8 iterations of signatures,software implementations 

has been done for the purpose of verification. In addition, investigation and research has been done on both primitive and 

standardised generator polynomials for CRC-8 and compared the level of difficulty that each of them presented to us. The results 

shows high error coverage has been achieved while maintaining an acceptable level of cost by integrating the suggested error-

detection techniques into the original finite-field multipliers of Luov's algorithm. 

 

 

Fig.3 Bit Serial Multiplier for GF(24) 
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V. RESULTS AND DISCUSSION 

The procedure known as "finite-field multiplication" is quite expensive and demands a big footprint. In order to demonstrate that 

the suggested error-detection systems give good error coverage with reasonable cost, developed the Luov polynomial generation 

algorithm. This kind of implementation results in the polynomial p(x) = am-1 xm-1  + ......+ a1x + a0, which necessitates m-1 finite-

field multiplications as well as m-1 XOR operations. As was said before, each and every finite-field multiplication makes use of 

three distinct modules that are referred to as the α, sum, and pass-thru modules. In order to carry out each finite-field 

multiplication, a total of m-1 α modules, m-1 sum modules, and m pass-thru modules are required. In addition, an XOR operation 

requires a total of m-1 sum modules to be carried out successfully [14]. Here, we have developed an 8-bit, 16-bit, and 32-bit 

Reliable CRC Implementation using a Versatile and Scalable Bit Serial Multiplier. Figure 5 displays the RTL Schematic for the 

32-bit architecture. Figure 6 shows the simulation results of 32-bit reliable CRC based error detection. Utilization of Resources in 

Xilinx Vertex-5 for architectures 8-bit,16-bit and 32-bit Reliable CRC Based Error Detection & Construction for Finite Field 

Multipliers were brought up in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CRC_DATA_IN 

8 

TMP_DATA 

CRC_DATA_IN 

16 

“00000000” & 

CRC 

16 

XOR1 (15)           XOR1 (14 DOWNTO 0) 

CHECK [“1000000000000000”] 8000 

16 16 

16 

‘0’ 

SHIFT LEFT 1BIT 

1 

If equal to ‘1’ then 
 

16 

CRC CRCPOLY (0001000000100001) 1021 

‘0’ 

SHIFT LEFT 1BIT ROTATED LOOP AT 8 TIMES 

Fig.4 Novel Architecture of CRC Implementation  

Fig.5 RTL Schematic of 32-bit Reliable CRC Based Error Detection 
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Parameter  
Architecture 

GF8 - CRC GF16 - CRC GF32 - CRC 
Number of Slice Registers 86 134 214 

Number of Slice LUTs 140 247 616 

Number of Occupied Slices 43 85 229 

IOBs 113 157 245 

Delay (ns) 3.102 3.133 3.665 

Power (mW) 0.3096 0.3199 0.3300 

 

 

VI. Conclusion 

 

In this work, error-detection schemes have been derived for the finite-field multipliers that are used in post quantum 

cryptographic algorithms. The error-detection architectures that have been presented in this study are based on CRC-8 signatures, 

and for the purpose of verification, we have carried out software implementations of these signatures. In addition, investigation 

and research has been done on both primitive and standardized generator polynomials for CRC-8, and compared the level of 

difficulty that each of them presented to us. Applications to cryptography are discussed throughout this paper, which presents an 

architecture for digit serial multiplication in finite fields GF. GF stands for Galois finite fields (2m). Within the scope of the 

system that has been provided, the stages of multiplication and degree reduction are alternated with one another. This system is 

based on the representation of polynomial bases. Calculations may be performed in any binary field of order using a multiplier 

that has M bits, and it is compatible with any irreducible polynomials that may be utilized. As a result, the Reliable CRC 

implementation and design of GF(23) = 8-Bit, GF(24) = 16-Bit, and GF(25) = 32-Bit based CRC Error detection will be combined 

with the Versatile and Scalable Digit Serial/Parallel Multiplier Architecture for Finite Field. The HDL language known as Verilog 

was used in the creation of this work, and Vertex-5 FPGA was used for the synthesis. After then, each of the parameters was 

evaluated based on its area, the amount of time it required, and its power. 
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